**Innovation for Our Energy Future** 

# Assessing the Potential for Retrofitting Diesel Power Systems

September 28, 2004

Per Lundsager Tom Lambert Ian Baring-Gould

#### **Session Overview**

- Provide a quick overview of the issues relating to the installation and/or retrofitting of remote power systems
- Review a of design checklist
- Introduction to NREL software, specifically HOMER

#### **Session Goals**

Obtain a quick understanding of how do you get started in looking at renewables.

## **Needs for Hybrid Power Design**

- Community loads: What are the loads to be assessed
- Available renewable resources: What resources are available close to the site.
- Spatial layout of the community: How dispersed is the population.
- Cost of the alternative energy options: Cost of the different options to supply power.
- Residents' ability and willingness to pay: What
  can the residents pay and are they willing to do so.
- Non-Institutional considerations: Other considerations for the communities in question



## **Community Loads**

#### Community load will greatly impact the system design

- Load estimation
- Projected growth, or reduction, of loads/population
- Quality of the electric service, the number of hours per day
- Large inductive loads must be considered.



COE can change drastically with the expected load, note how the system design also changes.



#### **Available Renewable Resources**



#### What resources are available?

- Resources near the community
- The daily and seasonal variations of resources
- Macro and microscopic assessment required
- Some models/methods available to predict resource

Wind resource map for Chiloe Islands



## **Spatial Layout of the Community**

## Directly impacts the economics of meeting the power requirements for the community

- Individual home, cluster or centralised power systems
- Acceptance of different qualities of service
- Allows political decision on connections



Mixture of individual and centralized power systems used for this island community. How much more would it cost to connect everybody?



#### **Cost of Alternatives**

For a true least cost solution the cost of the all feasible methods need to be assessed

- True cost of diesel fuel to the community
- Distance to existing high voltage transmission line
- Equipment cost, both renewable and conventional
- Cost based method of analysis



## Willingness/Ability to Pay

# An understanding of the community economics is important

- Impact of subsidized power
- Cost determines the type of service to be provided
- "New" tariff structures
  - metering of houses
  - multiple rate structure
  - Pre-payment



Multi-part tariff structure requires people who use more power to pay more for the service. Targets large power users not the poor - large consumers pay for expansion

### **Social Considerations**

Any social considerations that might impact the use or choice of the technology

- Level of education to supply maintenance
- Nomadic populations that will move around or spend a lot of time in other areas.
- Special needs or beliefs



## Steps in the design process

- Need specification: Why or what is needed
- Macro resource assessment
- Pre-feasibility study
- Initial impact study: Willingness to pay, technical impact of system modification
- Detailed data collection including renewables
- System modeling and economic evaluation
- Final system design, infrastructure specification
- System installation
- Maintenance specification and action items



## **Needs Specification**

- Why is energy needed at this specific site
- What type of energy is needed
  - Direct use for water pumping, water purification or ice making
  - Small power requirements for a school or health post
  - Electrifying a small community
  - Expanding the hours of operation of a large diesel plant
- What are the requirements for this energy
  - On demand power production
  - Intermittent power
  - Large loads, small loads
  - High or moderate reliability



### **General Resource Assessment**



## Conduct Macro-Resource Assessment

- Identify the basis for the project interest
- Obtain initial data on the existing plant
  - Equipment cost data
  - Economic parameters
  - Operation expenses, fuel and labor
- Obtain basic resource data
  - Renewable availability
  - Diesel fuel cost (including transportation)
- Identify limiting criteria
- Specify the criteria that will be used to made decisions on the analytical results



## **Pre-feasibility Studies...**

What is the most economical way to supply the power needed to provide the needs of the community/system

- Answer the basic questions that are of interest
  - basic power system design, estimate of installation and O&M expense, base line cost of alternatives, yearly power production, and fuel consumption
- Studies can be done by the host organization or contracted out to other private companies. - Be Careful either way as it requires skill to know the results of a study prepared externally is accurate.

## **Initial Impact Assessment**

Once the costs and basic system have been determined, will the project work financially as well as technically?

#### **Questions like**

How will the project be financed?

What does this do to the cost of energy?

Will it increase or decrease the or quality of service?

Is there a developed infrastructure to support the changes?

Who will be responsible for system O & M?

Are there social issues that need to be addressed?



### **Detailed Data Collection**

If there is support for the project then more detailed analysis needs to be conducted based on the results of the pre-feasibility study

- Site selection and identification: Where should the new plant elements be installed, difficulties with this
- Detailed resource assessment: Detailed data collection of the selected resources at the site. Obtain time series data for the resources
- Load and plant data: Obtain specific data from the diesel plant to be retrofitted. Load, plant configuration, operating strategy



## **Economic figures of merit - COE**

Cost of Energy - COE (\$/kWh production)

How much does it cost to produce a kWh of energy from the power system.

#### **Method:**

- Calculate the costs for the system for each year of the project, discount those back to the start of the project (Total discounted cost of the system)
- Estimate the yearly energy production of the plant for each year of operation and discount this back to the start of the project (Total discounted energy production from the system
- Divide the first number by the last

### **Analysis Procedures**

#### Loads

Primary time series or daily load profile

#### Site/Resource parameters

Wind and solar time series
Ambient temperature data
Elevation, site position and wind
turbulence parameters

#### **Power System**

Configuration and components

Component performance parameters

Dispatch Strategy

Detailed Modeling

#### **Performance Results**

System design

#### **Economic Results**

Capital cost O&M cost



## **Systems Analysis**

- HOMER software used to look at different electrification options for the island
- Hybrid2 used to refine the analysis, consider specific equipment choices and determine the expected cost of the power system





## Final System Design and Instalation

Determine final system requirements

## Contract for design and installation

- Construct grid/in house wiring
- Insure delivery of equipment
- System commissioning
- Obtain manuals and engineering drawings

Operating System

#### **In-house construction**

- Produce engineering drawings
- Varity dynamic operation
- Order equipment
- BOS specification
- Construct grid/in house wiring
- Design and install foundations
- Instalation of system
- Commissioning

## Important considerations

The design of hybrid power systems is not a trivial task that can be taken lightly.

Hybrid power systems are complex, from a technical and control standpoint, the designer must understand this.

- Designers must have a good understanding of
  - The technology of hybrid systems
  - Standard power system design
  - Economics
  - Social and mechanical infrastructure

They should employ modern tools to assist in the design process

#### **Conclusions**

- The experience needed will depend on the situation, though some understanding is critical
- Many considerations need to be addressed in the design of hybrid power systems
  - Financial
  - Technical
  - Social
- NREL has simulation models that can be used to make this process easier
- An understanding of power system economics is critical to the design of power systems

